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Abstract

Thermal waves produced by a periodic heat generation in homogeneous and inhomogeneous solids are examined from the theoretical
point of view. The analysis is done for boundary conditions, thermal wave attenuation in a nondissipate medium and the physical meaning of
“reflected thermal waves”. Separately it is discussed the comparison with electromagnetic waves. A new approach is suggested for calculation
effective thermal conductivity and effective thermal diffusivity in two-layer structures within the frames of photothermal experiments. It is
shown that the effective parameters depend on the physical properties of separate layers and interface, the manner of measuring these
parameters, and the points of measuring.
 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

A very active area of research in applied physics these
days comes under the general heading of photothermal
phenomena. Photothermal techniques in solid materials are
becoming a valuable tool in measuring thermal parameters
in solids and especially in the semiconductor industry for
characterizing process in the manufacturing of electronic de-
vice [1]. These techniques are versatile, nondestructive and
can be employed under different experimental conditions for
determining thermal parameters of solids and liquid mate-
rials. Several photoacoustic cells with slight modifications,
including the derivative photopyroelectric and photothermal
deflection methods, have been used in some special cases
with great success [2]. Recently, a new technique has been
described in which a transient thermoelectric voltage of a
semiconductor is measured after a pulse laser radiation [3].
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In all the cases, the photothermal signal depends on the
material thermal properties, interaction between the quasi-
particle systems as well as on the geometry of the sample.
The fact the photothermal signal depends upon how the
heat diffuses through the sample, allows us to perform ther-
mal characterization of the sample (i.e., measurements of
it thermal conductivity and thermal diffusivity), and carrier
transport properties.

The theoretical model of studying the thermal waves is
based on the equation of heat flow. In the one-dimension
case and in the absence of heat sources and sinks it is given
as following [4],

∂2T (x, t)

∂x2 = 1

α

∂T (x, t)

∂t
(1)

where T (x, t) is the temperature,α = κ
ρc

is the thermal
diffusivity, κ is the heat conductivity,ρ is the density,c is
the specific heat. The space coordinate isx, andt is time.

Many authors [5] propose an additional termτc ∂
2T

∂t2
in

Eq. (1) whereτc is the energy relaxation time. This new
equation really represents a wave equation instead of a
diffusion one and it is valid whenτc > ω−1, whereω being
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Nomenclature

α thermal diffusivity
αF effective thermal diffusivity measured by the

front surface illumination method
αR effective thermal diffusivity measured by the rear

surface illumination method
d sample’s length
d1 length of the first layer in the two-layer system
c specific heat
cl light speed
Ei component of the vector electric or magnetic

field
η interface thermal conductivity
η̃ surface thermal conductivity at the sample’s

surfacex = 0
ηd surface thermal conductivity at the sample’s

surfacex = d

I0 average over time light intensity
�I modulating part of light intensity
κ thermal conductivity
κF effective thermal conductivity measured by the

front surface illumination method
κR effective thermal conductivity measured by the

rear surface illumination method
L thermal diffusion length
ρ density
Q0 average over time of total heat flux at the surface
�Q dynamic part of light-to heat-conversion at the

surface
T temperature
T0 ambient temperature
ω modulation frequency

the frequency of the modulation light converted into heat
in photothermal experiments [2]. However, it is well known
that the temperatureT is a thermodynamic parameter which
describes the average energy of the system; thus ifτc satisfy
τc > ω

−1 thenT is not a well defined parameter and Eq. (1)
losses its physical meaning. In this work, we shall restrict
ourselves to study conduction of heat in isotropic solids in
which Eq. (1) is valid, i.e.,τc ≈ 0.

Carslaw and Jaeger’s [4] and other books contain a
wealth of solutions of the heat-conduction equation. One
of them usually corresponds to so-called thermal waves.
A plane thermal wave has the form eiωt+σx , whereσ =
(1 ± i)( ω2α )

1/2, i = √−1 (See Section 2). It is thus damped
by a factor e−1 in a distance called by the thermal diffusion
lengthL= (2α

ω
)1/2.

Immediately a natural question arises: what does happen
with the energy conservation in a nondissipate media where
there are not any sources and sinks of heat? Besides,
formally the term eiωt+σx [4] represents a reflected thermal
wave in the sample. If heat is a diffusion process: what is the
physical interpretation of this term?

In the present work heat diffusion in one- and two-
layer samples created by a periodic light beam is examined
from the physical point of view. We restrict our analysis by
solving the heat-diffusion equation assuming that the sample
is optically opaque to the incident light. It is clear that when
the intensity of the radiation is specified, the light-into-heat
conversion at the surfacex = 0 must be used as a boundary
condition [6].

It is important to mention that the solutions of the heat
diffusion equation obtained in this work in one-layer sam-
ples are not new, they where first obtained by Rosencwaig
and Gersho [7] in the interpretation of the photoacoustic ef-
fect in solids on the basis of thermal waves. However, the

physical meaning of the solutions and the boundary condi-
tions used in [7] are not completely clear.

Two-layer structures are often examined as a most sim-
ple model of multilayer, inhomogeneous structures under
theoretical research. One of the main problems is to obtain
expressions for the effective thermal parameters, being in
agreement with the experimental measurements.

One of the popular approach is suggested by Mansanares
et al. [8]. They used the analogy between thermal and
electrical resistance in heat transfer problems. The effective
thermal diffusivity obtained by these authors depends on
relative thickness of materials, thermal diffusivities of each
layer and the ratio of thermal conductivities of materials.
Recently, Lucio et al. [9] have generalized the “resistance
analogy” model. They have showed that equations arisen
from “thermal-resistance analogy” model are valid only
when both materials are thermally thin (thermal diffusion
length is much more then the each layer’s length). In the case
of thermally thick components (thermal diffusion length is
much less then the layer’s length), the equation for the
effective thermal diffusivity was obtained, and it was shown
that it depends not only upon the thermal parameters of
constituents but on the chopping frequency too.

About the last mentioned works (see also [10]) we have
our opinion. The “electric and thermal analogy” is not ad-
equate to describe a photothermal experimental situation.
Potential difference only has the physical sense in elec-
trodynamics. In nonequilibrium thermodynamics, not only
temperature difference has physical sense (the analogy with
potential difference) but the temperature itself too; it can be
measured at Kelvin absolute scale. Just the temperature or
some response to this temperature, is measured in photother-
mal experiments, but not the temperature difference [11].

We suggest another approach for calculation of effective
thermal conductivity and thermal diffusivity of two-layer
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samples. Every instrument measures temperature or temper-
ature response in photoacoustic experiments only at one of
the surface of the sample, the volume is the “black body” for
it. Therefore the main idea comes to an imaginary replace-
ment of the real two-layer structure by an effective one-layer
sample. The demand of equality of boundary conditions on
the left or right surface (where the measurement is carried
out) is necessary. Thermal parameters of effective sample
are the effective parameters of the real two-layer structure
if the temperature at chosen surface of these samples is the
same.

It is important to emphasize that equalization of tempera-
tures on either left or right sides of the real two-layer system
and the effective one-layer sample (but not temperature dif-
ference) can provide the different expressions for effective
parameters. It means that the effective thermal conductiv-
ity and thermal diffusivity, in general, depend on how we
carry out the measurements and the points of these measure-
ments.

Generally, two different ways of the sample heating are
used in photoacoustic experiments being the most popular
of photothermal technique [12,13]. First of them is the
front surface illumination (the detecting photoacoustic cell
is replaced at the irradiated sample surface, and it is called
by the close photoacoustic cell). The second one is the
rear surface illumination (the photoacoustc cell is replaced
at the back sample surface, and it is called by the open
photoacoustic cell). In the first case the nonequilibrium
temperature is detected at the same surface on which the
modulated laser beam falls. The second method assumes the
detection this temperature at the opposite sample side.

With respect to photoacoustic experiments it means
that we can measure different values of effective thermal
conductivity and effective thermal diffusivity depending on
which illumination method is utilized, the closed acoustic
cell or the open one.

2. One-layer sample. Boundary conditions

In this paper we are considering that the thermal con-
ductivity and the thermal diffusivity are independent on the
nonequilibrium temperature, so this approximation is valid
when the intensity of the incident radiation is not strong. The
solution T (x, t) should be supplemented by the boundary
conditions at the sample surfacesx = 0 andx = d , where
x = d is the sample surface opposite to the irradiated sur-
facex = 0. In the photothermal experiments, the common
mechanism to produce thermal waves is the absorption an
incident modulated light beamI0 + �Ieiωt at the surface
x = 0, whereI0 is the average over time the light intensity,
�I is the modulating part of light intensity,ω is the modula-
tion frequency. The lateral sides of the sample are supposed
to be adiabatically insulated.

In the case of surface absorption one can write the
boundary condition at the surfacex = 0 as follows:

−κ ∂T
∂x

∣∣∣
x=0

= [(
Q0 +�Qeiωt ) − η̃(T − T0)

]
x=0 (2)

HereQ0 is the average over time of the total heat flux
Q(x, t) at the surface of the sample, and it is proportional to
the intensityI0. Physically, this static heat flux at the surface
gives rise to a non-depending on time nonequilibrium
temperature distribution in the specimen. The term�Q
corresponds to the dynamic part of light-to heat-conversion
at the surface, and it is proportional to the intensity�I .
The ambient temperature isT0. This surface heat source
has sinusoidal time dependence and it produces thermal
wave propagation into the sample. The second term in the
square bracket in Eq. (2) represents the heat flux from the
surface of the sample to the surrounding media. At the
limit when surface thermal conductivitỹη → 0 (adiabatic
approximation), the heat boundary condition is only given
by the first term. It is necessary to notice that bothQ0 and
�Q are phenomenological parameters in the present paper.

The temperature itself cannot be used as the boundary
condition in the theoretical study of the photothermal exper-
iments because it is usually an unknown parameter. It can be
used as the boundary condition only if the sample is heated
by the contacting heater with the given temperature.

In this connection, it is important to compare the bound-
ary conditions used in this work with the other ones used
in previous theories. Rosencwaig and Gersho [7] and many
other scientists consider the temperature and heat flow con-
tinuity at the surfacex = 0 in order to describe thermal
waves in photothermal experiments. Opsal and Rosencwaig
[14], on the other hand, used a periodic heat sourceQeiωt

at the surface of a semi-infinite body as boundary condition
to study the thermal wave depth profiling. From our point
of view, the correct equation for the heat flux at the surface
must be written byQ(x = 0, t)=Q0 +�Qeiωt , whereQ0,
�Q> 0;�Qeiωt can be positive or negative at different mo-
ment of time, and�Q <Q0. In according with Opsal and
Rosencwaig model, only the periodic surface heat source
generates heat diffusion process, the contribution of the sta-
tic light intensity is ignored. In this case the amplitude of the
modulation heat is greater than average over the time value
〈Qeiwt 〉 = 0, and can take negative values. It is clear that this
situation has no physical sence.

The boundary condition at the surfacex = d can be taken
in the form

−κ ∂T
∂x

∣∣∣
x=d = ηd(T − T0) (3)

Nevertheless, for simplicity, we suppose that the thermal
contact at this surface is perfect(ηd → ∞), so we can write

T (x, t)|x=d = T0 (4)



66 Y.G. Gurevich et al. / International Journal of Thermal Sciences 42 (2003) 63–69

3. Temperature distribution in one-layer sample

Let us write the general solution of the heat diffusion
equation (1) in the form

T (x, t)=A+Bx +Θ(x)eiωt (5)

where A, B are unknown constants,Θ(x) is unknown
function, determining the coordinate dependence of the
thermal wave and satisfying the equation

d2Θ

dx2 = iω

α
Θ (6)

Supposing for simplicity that̃η = 0 at the surfacex = 0
andηd = ∞ at the surfacex = d the boundary conditions
take the form:

−κ dΘ(x)

dx

∣∣∣
x=0

=�Q
Θ(x)|x=d = 0

(7)

In this case the constantsA, B are the following,

A= T0 + Q0

κ
d, B = −Q0

κ
(8)

Thus, the solution of Eq. (6) is

Θ(x)= f1e−σx + f2eσx (9)

where

f1 = eσd

eσd + e−σd
�Q

κσ
, f2 = e−σd

eσd + e−σd
�Q

κσ
(10)

andσ = (1+ i)
√
ω
2α .

Combining Eqs. (5) and (8)–(10) we obtain

T (x, t)= T0 + Q0

κ
(d − x)+ �Q

κ

sinhσ(d − x)
coshσd

eiωt (11)

It is follows from Eq. (11) that the dynamic tempera-
ture distribution depended on time attenuates to zero with
increasing distance from the surfacex = 0. At the distance

L ≈ |σ |−1 =
√

2α
ω

=
√

2κ
ρcω

this contribution to the temper-

ature fluctuation is effectively damped out. Besides, there is
the “reflected” thermal wave. Both these facts are needing in
the explanation because we are examining the heat diffusion
process.

For the electromagnetic waves the attenuation is associ-
ated with the energy transfer to the charge particles setting
in the motion.

For the thermal waves the reason of attenuation is quite
different. Let us represent the elementary calculations which
will help to understand the essence of the matter.

Let us write the temperature (11) in the form,

T (x, t)= T s(x)+ T d(x, t)
Here T s(x) = T0 + Q0

κ
(d − x) is the static part of the

temperature distribution,

T d(x, t)= �Q

κ

sinhσ(d − x)
coshσd

eiωt is the dynamic part.

The heat quantity evolving or absorbing in the unite
volume and per unite time is equal to�Q= −div �q, where
�q is the heat flux density. In our case�q = �qs + �qd , where in
one-dimensional caseqs = −κ dT s

dx is the density of the static

heat flux, andqd = −κ dT d
dx is the density of the dynamic heat

flux.
It easy to see, that�Qs = −div �qs = 0, i.e., the static

heat flux is not absorbed. At the same time�Qd =
−div �qd = ρc ∂T d

∂t
�= 0. From this result it is follows that the

attenuation of the thermal wave is caused by the presence
of the heat capacity and the temperature variation on time.
This variation is proportional to the modulation frequency.
Thus, the matter’s property to accumulate heat energy is the
main reason of the thermal wave damping. What why the
decay distanceL rapidly decreases with increasing of the
heat capacity and the modulation frequency.

The another question is: what is the physical meaning
of the “reflected heat wave”? The answer is the following:
The modulation part of the dynamic heat flux�Qeiωt at
the irradiated surface can be positive or negative. So during
a half period of the modulation incident radiation, i.e., for
π
ω

, the dynamic part of the temperature at this surface is
higher than inside of the sample and during this time there is
propagation of heat from the surface to the bulk of solid.
This effect is associated with the decreasing exponential
term in Eqs. (9) and (11). On the other hand, the growing
exponential term in these Eqs. represents the heat flux from
inside to the surface of the sample when�Qeiωt is negative,
i.e., now, during the period of timeπ

ω
the dynamic part of the

temperature in the bulk is higher than at the surface.
As can be seen from Eq. (11), the dynamic contribution

to the temperature distribution has a sinusoidal dependence
through the imaginary part of the exponential terms, i.e.,

e±i
√

2α
ω
x . Nevertheless, the propagation of the thermal waves

in the sample is not similar to the propagation of the
electromagnetic waves having formally the same shape. The
heat flux is a diffusion process, and it is described by
the heat diffusion equation (1), while the propagation of
electromagnetic waves satisfies the wave equation.

4. Comparison with electromagnetic waves

We believe, at this point, that it is important to emphasize
the main differences between the propagation of electromag-
netic waves (can also be sound waves) and thermal waves.
The main of them is the following: The propagation of the
plane transverse electromagnetic waves satisfies the wave
equation

∂2Ei

∂x2
= ε

c2
l

∂2Ei

∂t2
(12)

which is a hyperbolic equation, while the temperature
satisfies a parabolic equation (see Eq. (1)). HereEi (i =
x, y, z) is a component of the vector electric or magnetic
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field, cl is the light speed in the matter,ε is the complex
dielectric constant [15].

The any known wave (sound, electromagnetic) is trans-
verse or longitudinal, besides transverse waves are polarized.
These concepts are absent for the thermal waves.

In general, the solution of the wave equation for the
electromagnetic field is

Ei(x, t)=Ei1e−λxei(ωt−kx)+Ei2eλxei(ωt+kx) (13)

whereEi1,2 are constants,λ is the light absorption coeffi-
cient,k is the wave number [15].

On the other hand, the time-dependence solution of the
heat diffusion equation, Eq. (11), is given by

T (x, t)= T1e−γ xei(ωt−γ x)− T2eγ xei(ωt+γ x) (14)

whereT1,2 are complex values, andγ = L−1 =
√
ω
2α .

Although, Eqs. (13), (14) are mathematically similar, the
physical meaning of them are different.

Firstly, it is the change on sign in the solution of the
diffusion equation, Eq. (13) as compared with Eq. (14). In
the wave problem the total flux density of energy in the
sample is the difference of the flux density energy of both,
the transmitted and reflected waves and it is proportional to
|Ei |2 (Poynting vector). In the heat diffusion process it is the
sum. It corresponds to the rate at which the heat is generated
or absorbed at various places in the sample and because the
energy heat flux can be positive or negative

�Q(x, t)= −κ ∂T (x, t)
∂x

Secondly, it is important to note that the following
inequality k � λ is always fulfilled in the solution of the
wave problem [15]. The absorption coefficient and the wave
number of the thermal waves are the same (see Eq. (14)).
The reason of this is the complex value of the right-hand
of Eq. (12) while the right-hand of Eq. (6) is the pure
imaginary quantityiω

α
. All these differences mentioned in

the text show that the analogy between thermal “waves” and
electromagnetic waves is not correct.

5. Temperature distributions in two-layer structure,
and equations for effective thermal parameters

Similarly to the previous sections let us assume that the
energy of the modulated laser beam is converted into heat
completely onto the surfacex = 0 of the two-layer sample
(see Fig. 1). Each layer is homogeneous and isotropic and
the cross section at any plane perpendicular to the axisox

is equal to unity. The opposite surfacex = d is in contact
with a thermostat at a temperatureT0; the lateral sides are
adiabatically insulated. Thus the problem is one-dimensional
and the temperature distributions in two-layer structure can
be obtained from the following heat diffusion equations:

∂2T1,2(x, t)

∂x2 = 1

α1,2

∂T1,2(x, t)

∂t
(15)

Fig. 1. (A) Two-layer structure; (B) One-layer effective sample.

whereT1,2(x, t) are the temperatures,α1,2 = κ1,2/(ρc)1,2
are the thermal diffusivities,κ1,2 are the thermal conductiv-
ities,ρ1,2 are the densities, andc1,2 are the specific heats in
the first and the second layer, respectively.

In this problem we take into account the thermal proper-
ties of interfacial region between layers. Really it has some
thickness and some thermal conductivity different from the
thermal conductivities in the principal volumes of the layers.
In the model of surface interface its thickness tends to zero
and the heat property of this region is described by the some
surface thermal conductivityη. The temperature gap takes
place at the interface planex = d1 when the thermal con-
ductivity η has the finite magnitude [16]. In this case within
the interface region the thermal flux is defined by the follow-
ing temperature differenceT2(x = d1 +0)−T1(x = d1 −0).
Simultaneously the condition of continuity of thermal fluxes
must takes place at the planex = d1.

Thus, the boundary conditions to Eq. (15) can be written
in the following form (compare with [6]),

−κ1
∂T1(x, t)

∂x

∣∣∣
x=0

=Q0 +�Qeiωt |x=0 (16.1)

κ1
∂T1(x, t)

∂x

∣∣∣
x=d1

= κ2
∂T2(x, t)

∂x
|x=d1 (16.2)

−κ1
∂T1(x, t)

∂x

∣∣∣
x=d1

= η(T1(x, t)− T2(x, t)
)|x=d1 (16.3)

T2(x, t)|x=d = T0 (16.4)

The solutions of Eq. (15) with the boundary conditions
(16) are as follows,

At the interval 0� x � d1,

T1(x, t)=A1 +B1x + {
U1 cosh

[
σ1(x − d1)

]
−U2 sinh

[
σ1(x − d1)

]}
eiωt (17)

At the intervald1 � x � d ,

T2(x, t) = A2 +B2(x − d1)

+
{

2(�Q/(κ2σ2))sinh[σ2(d − x)]
D

}
eiωt (18)
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where

U1 = 2(�Q/(κ1σ1))[ κ1σ1
κ2σ2

sinh(σ2d2)+ κ1σ1
η

cosh(σ2d2)]
D

U2 = 2(�Q/(κ1σ1))cosh(σ2d2)

D

A1 = T0 + Q0

η
+Q0

(
d1

κ1
+ d2

κ2

)

A2 = T0 + Q0

κ2
d2

B1 = −Q0

κ1
(19)

B2 = −Q0

κ2

σ1,2 = (1+ i)q1,2

q1,2 =
√

ω

2α1,2

D =
(

1− κ1σ1

κ2σ2

)
cosh(σ1d1 − σ2d2)

+
(

1+ κ1σ1

κ2σ2

)
cosh(σ1d1 + σ2d2)

+
(
κ1σ1

η

)[
sinh(σ1d1 − σ2d2)+ sinh(σ1d1 + σ2d2)

]

It is easy to see that the temperature of each layer depends
on the thermal bulk parameters of both layers and on the
interface thermal conductivity too. It is obviously that the
photothermal signal includes itself an information about the
integral thermal conductivity and thermal diffusivity which
are the function of all parameters of both layers. What
are these functions is the main question of the examined
problem.

Let us now imagine some homogeneous one-layer sample
having the same geometric shape like the real two-layer
system with thermal conductivityκ , thermal diffusivityα
and the thicknessd = d1 + d2 (see Fig. 1).

Let us call the valuesκF andαF the effective thermal
conductivity and effective thermal diffusivity measured by
the front surface illumination method (FSIM) if they are
obtained from the following equation,

T (x = 0, t)= T1(x = 0, t) (20)

Similarly one could define the effective thermal con-
ductivity κR and the effective thermal diffusivityαR under
the measurement by the rear surface illumination method
(RISM), i.e., from the sidex = d . If contactx = d is isother-
mal we cannot compare temperaturesT2(x) and T (x) on
the surfacex = d because here they are equal to the am-
bient temperature (see boundary conditions (16,4) and (4)).
So the procedure of obtaining thermal parameters by RSIM
relates to the points closely located tox = d , i.e., in the point
x = d−δ. Hereδ is the infinitely small distance. In this point
both the real and effective temperature are nonequilibrium.

In this case

T (x = d − δ, t)= T2(x = d − δ, t) (21)

is the equation to calculateκR andαR by RISM.
We postulate that the values of all this effective parame-

ters are adequate to the experimental situation.

6. Effective thermal parameters

Eqs. (20) and (21) in general case are very complicated,
complex, and transcendental equations for obtaining both,
effective thermal conductivity and effective thermal diffu-
sivity. Therefore, for simplicity let us discuss some special
cases corresponding to low modulation frequencies. Since
the frequency 2αi/d2

i is the characteristic frequency ofith
layer, then the criterions of low frequencies is the following
inequalities:

ω� 2αi
d2
i

or di � Li = |σi |−1 (22)

where

|σi |−1 =
√

2αi
ω

(22′)

The latter inequalities determine so-called thermally thin
samples.

It is clear that the modulation frequencyω can be in
arbitrary relations with the characteristic frequenciesωi =
2αi
d2
i

corresponding to the different layers becauseω is the

independent value.
Thus, the front surface illumination measurements (FSIM)

(Eq. (20)), results in the following effective parameters,

κF = d1 + d2

d1/κ1 + d2/κ2 + 1/η
(23)

αF = (d1 + d2)
3

κF (d
3
1/α1κ1 + d3

2/α2κ2)+ 3κ1d1d2(d1+d2)
α1κ2

(1+ κ2
ηd2
)

(24)

Under the rear surface illumination measurements (RSIM)
(see Eq. (21)), the effective parameters are another,

κR = κ2 (25)

αR = d2

d2
1/α1 + d2

2/α2 + 2(κ1/κ2)(d1d2/α1)(1+ κ2/(ηd2))

(26)

Thus, we come to the very important result, that the ef-
fective parameters measured by the photothermal techniques
are not the one-valid parameters. Their magnitudes depend
on the manner of measurement and the point of measure-
ment.

The effective thermal diffusivity depends on the all heat
parameters of the two-layer system such as the thermal
conductivity κ1, κ2; thermal diffusivities α1, α2; layer
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geometric sizes and the interface thermal conductivityη. At
the same time the effective thermal conductivity does not
depend on the thermal diffusivities.

It is clear that the interface does not influence on
the effective parameters in the case of isothermal contact
between the layers. It is follows from Eqs. (23), (24) and
(26) that the criterion of this isothermally are different
for the effective thermal conductivity and effective thermal
diffusivity. This criterion is

η� κ1κ2

κ2d1 + κ1d2
(27)

for the effective thermal conductivity. It includes itself the
thermal conductivities of both layers and its thickness.

At the same time

η� κ2

d2
(28)

is the criterion of isothermally for the effective thermal
diffusivity. It is determined by the correlation between the
interface thermal conductivity, the heat conductivity of the
second layer and it thickness.

It is interesting to examine separately the influence of
the interface on the effective parameters values. Let us
assume that the two-layer system consists of two identical
layers (d1 = d2, κ1 = κ2, α1 = α2) divided by some
interface having the finite surface thermal conductivity.
The measurements by the method of closed or open cells
result in the different heat effective parameters even in
this elementary case. Really, under front illumination we
have:

κF = κ1
1

1+ κ1/(2d1η)
(29)

αF = α1
4

3(1+ κ1/(d1η))+ (1+ κ1/(2d1η))−1
(30)

Hereκ1, α1, d1 are the thermal conductivity, thermal diffu-
sivity and thickness of layer, respectively.

The same parameters obtained by the method of open cell
are following,

κR = κ1 and αR = α1
1

1+ κ1
2d1η

(31)

The measurements by closed and open cells lead to the
same results only in the case of isothermal contact, but it is
just the one-layer sample.

7. Conclusions

In conclusion, a theoretical analysis of thermal waves
has been studied. Using the appropriate boundary conditions
adequate to the photothermal experiments, we have obtained
the temperature distributions in one and two-layer samples.
It is examined the physical reason of the thermal wave
attenuation and the meaning of the “reflected thermal wave”.

We have suggested a new approach to obtain the effective
thermal conductivity and the effective thermal diffusivity of
one-dimensional two-layer structures when the photother-
mal methods are used. One of the principal statements tells
that under different photothermal measurements (close cell
or open cell) we obtain different values of the thermal pa-
rameters occur in general case. Besides, the finite values of
the interface thermal conductivity leads to essential modi-
fication of both the effective thermal conductivity and the
effective thermal diffusivity.
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